The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems

نویسندگان

  • Ernesto G. Birgin
  • Damián R. Fernández
  • José Mario Martínez
چکیده

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness of this approach is associated with boundedness of penalty parameters. In this paper it is proved that, under more natural assumptions than the ones up to now employed, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Convergence Properties of

We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...

متن کامل

On Augmented Lagrangian Methods with General Lower-Level Constraints

Augmented Lagrangian methods with general lower-level constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems in which the constraints are only of the lower-level type. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence...

متن کامل

A Direct Search Approach to Nonlinear Programming Problems Using an Augmented Lagrangian Method with Explicit Treatment of Linear Constraints

We consider solving nonlinear programming problems using an augmented Lagrangian method that makes use of derivative-free generating set search to solve the subproblems. Our approach is based on the augmented Lagrangian framework of Andreani, Birgin, Mart́ınez, and Schuverdt which allows one to partition the set of constraints so that one subset can be left explicit, and thus treated directly wh...

متن کامل

Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: the first one ap...

متن کامل

Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints

We consider the global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in different ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems; in each subprob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012